- **1.** Express $\sin 2\theta + \sqrt{3} \cos 2\theta$ in the form $R \sin(2\theta + \alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$. Hence,
 - (i) find the maximum value of $(\sin 2\theta + \sqrt{3}\cos 2\theta)^2$ and the corresponding angle, θ at which the maximum value occurs.
 - (ii) Solve $\sin 2\theta + \sqrt{3}\cos 2\theta = 1$ for $0 \le \theta \le \pi$.

2. Prove (i)
$$\cos^{-1}(-x) = \pi - \cos^{-1}x$$
 (ii) $\frac{1}{4}\pi + \tan^{-1}x = \tan^{-1}\left(\frac{1+x}{1-x}\right)$

- 3. Prove: $\frac{\cos^4\theta + \sin^4\theta}{\cos^4\theta \sin^4\theta} = \frac{1}{2}(\cos 2\theta + \sec 2\theta)$
- **4.** Solve the equation $2\cos\theta + 5\sin\theta = 4$ by expressing in the form $\cos(2\theta + \alpha)$, where $0^{\circ} \le \theta \le 360^{\circ}$

5. Prove that :
$$\frac{d^n}{dx^n}\sin x = \sin\left(x + \frac{n\pi}{2}\right)$$

- 6. (i) Find the set of values of x in the interval $-\pi < x < \pi$ such that $|\sin 2x| > \frac{1}{2}$.
 - (ii) From (i), find the set of values of x in the interval $-\pi < x < \pi$ such that $|\sin 2x| > \frac{1}{2}$
- 7. Referring to the diagram, building A is measured with 50 m in height. The angle from the base of the building A to the highest point of building B is measured as 62°. The angle formed from the rooftop of building A right to the highest point of building B is 59°. What is the distance that keeps the two buildings apart?

- 8. It is given that $f(x) = 11 \cos^2 x 6 \sin x \cos x + 3 \sin^2 x$.
 - (a) Express f(x) in the form of $a \cos 2x + b \sin 2x + c$, where a, b and c are constants.
 - **(b)** Show that f(x) can be expressed in the form of $rcos(2x + \alpha) + c$, where r and c are constants and $\tan \alpha = \frac{3}{4}$.
 - (c) Find the maximum and minimum values of the express $\frac{1}{f(x)}$.
 - (d) Find the values of x between 0° and 180° such that f(x) = 8.
 - (e) Find the set of values of x in the interval $0^{\circ} \le x \le 180^{\circ}$ such that $2 \le f(x) \le 4.5$